Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence
Englisch, Aglaé Bassens, Grant Beyleveld, Jon Krohn, 2024Produktinformationen
"The authors' clear visual style provides a comprehensive look at what's currently possible with artificial neural networks as well as a glimpse of the magic that's to come."—Tim Urban, author of Wait But WhyFully Practical, Insightful Guide to Modern Deep LearningDeep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline's techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn.World-class instructor and practitioner Jon Krohn—with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens—presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered.You'll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms.Discover what makes deep learning systems unique, and the implications for practitionersExplore new tools that make deep learning models easier to build, use, and improveMaster essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and moreWalk.
Sprache | Englisch |
Autor | Aglaé Bassens, Grant Beyleveld, Jon Krohn |
Thema | Technik & IT |
Unterthema | Informatik |
Jahr | 2024 |
Anzahl Seiten | 416 |
Artikelnummer | 43136829 |
Verlag | Pearson Studium |
Kategorie | Fachbücher |
Release-Datum | 10.12.2019 |
Thema | Technik & IT |
Unterthema | Informatik |
Sprache | Englisch |
Autor | Aglaé Bassens, Grant Beyleveld, Jon Krohn |
Jahr | 2024 |
Anzahl Seiten | 416 |
CO₂-Emission | |
Klimabeitrag |
Höhe | 232 mm |
Breite | 174 mm |
Gewicht | 580 g |
Produkte vergleichen
Passend dazu
Bewertungen & Meinungen
Garantiefallquote
So oft weist ein Produkt dieser Marke in der Kategorie «Fachbücher» innerhalb der ersten 24 Monate einen Defekt auf.
Quelle: Digitec Galaxus- 50.Kösel0.2 %
- 50.O'Reilly0.2 %
- 50.Pearson Studium0.2 %
- 50.Rheinwerk0.2 %
- 50.rororo0.2 %
Garantiefalldauer
So lange dauert eine Abwicklung ab Ankunft bei der Servicestelle bis Wiedererhalt in Arbeitstagen im Durchschnitt.
Quelle: Digitec Galaxus- Pearson StudiumUngenügende Daten
- An der RuhrUngenügende Daten
- AnacondaUngenügende Daten
- AristonUngenügende Daten
- Avery Publishing GroupUngenügende Daten
Leider haben wir für diese Kategorie aktuell noch nicht genügend Daten, um dir mehr Quoten anzuzeigen.
Rückgabequote
So oft wird ein Produkt dieser Marke in der Kategorie «Fachbücher» retourniert.
Quelle: Digitec Galaxus- 62.Narayana1 %
- 62.Orell Füssli1 %
- 62.Pearson Studium1 %
- 62.Reinhardt Ernst1 %
- 62.Wiley VCH1 %